TY - JOUR
T1 - Toddaculin, isolated from of Toddala asiatica (L) Lam., inhibited osteoclastogenesis in RAW 264 cells and enhanced osteoblastogenesis in MC3T3-E1 cells
AU - Watanabe, Akio
AU - Kumagai, Momochika
AU - Mishima, Takashi
AU - Ito, Junya
AU - Otoki, Yurika
AU - Harada, Teppei
AU - Kato, Tsuyoshi
AU - Yoshida, Mikihiko
AU - Suzuki, Misora
AU - Yoshida, Izumi
AU - Fujita, Kazuhiro
AU - Watai, Masatoshi
AU - Nakagawa, Kiyotaka
AU - Miyazawa, Teruo
N1 - Publisher Copyright:
© 2015 Watanabe et al.
PY - 2015/5/18
Y1 - 2015/5/18
N2 - Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. Toddalia asiatica (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from Toddalia asiatica (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.
AB - Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. Toddalia asiatica (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from Toddalia asiatica (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.
UR - http://www.scopus.com/inward/record.url?scp=84930641177&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930641177&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0127158
DO - 10.1371/journal.pone.0127158
M3 - Article
C2 - 25993011
AN - SCOPUS:84930641177
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e0127158
ER -