Abstract
Scanning ion conductance microscopy (SICM) using a nanopipette as a probe and ionic current as a feedback signal was introduced as a novel technique to study live cells in a physiological environment. To avoid contact between the pipette tip and cells during the conventional lateral scanning mode, we adopted a standing approach (STA) mode in which the probe was moved vertically to first approach and then retracted from the cell surface at each measurement point on an XY plane. The STA mode ensured non-contact imaging of the topography of live cells and for a wide range of uneven substrates (500 × 300 µm to 5 × 5 µm). We also used a field-programmable gate array (FPGA) board to enhance feedback distance regulation. FPGA dramatically increased the feedback speed and decreased the imaging time (450 s per image) with enhanced accuracy and quality of live cell images. To evaluate the potential of the STA mode for SICM, we carried out imaging of a convoluted surface of live cell in various scan ranges and estimated the spatial resolutions of these images.
Original language | English |
---|---|
Pages (from-to) | 10012-10017 |
Number of pages | 6 |
Journal | Physical Chemistry Chemical Physics |
Volume | 12 |
Issue number | 34 |
DOIs | |
Publication status | Published - 2010 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry