Abstract
Preparation of a p-n heterojunction with hierarchical structure is of great significance for photocatalysis due to its large specific surface area, abundant active sites and increased charge separation rate. Herein, we designed the novel p-n heterojunction photocatalyst TiO2/SnO microflower (TiO2/F-SnO) with hierarchical architecture by decorating TiO2 nanoparticles on the surface of the SnO microflower via a simple hydrothermal route. Compared to pure TiO2 and TiO2/SnO with a microplate structure (TiO2/P-SnO), TiO2/F-SnO heterojunctions exhibited significantly enhanced photocatalytic performances for organics removal such as toluidine blue O (TBO) and methylene blue (MB) under daylight fluorescent lamp irradiation (350-800 nm). The improved performance was not only ascribed to the promoted charge transfer and separation efficiency induced by the formation of p-n junction, but also attributed to the larger specific surface area, sufficient active sites and stronger redox ability provided by the hierarchical microflowers. Moreover, after three photocatalytic cycles (24 h), the TiO2/SnO heterojunction still exhibited a stable photocatalytic activity. Finally, the photocatalytic enhancement mechanism for the TiO2/SnO heterojunction was proposed based on band alignments calculation and the active species trapping experiments.
Original language | English |
---|---|
Article number | 434001 |
Journal | Nanotechnology |
Volume | 30 |
Issue number | 43 |
DOIs | |
Publication status | Published - 2019 Aug 12 |
Keywords
- hierarchical structure
- interface engineering
- p-n heterojunction
- photocatalyst
- photocatalytic degradation
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering