TY - JOUR
T1 - Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes
T2 - A new insight into gene order conservation
AU - Satoh, Takashi P.
AU - Sato, Yukuto
AU - Masuyama, Naoharu
AU - Miya, Masaki
AU - Nishida, Mutsumi
N1 - Funding Information:
We thank our colleagues at the Atmosphere and Ocean Research Institute of the University of Tokyo for helpful discussions. This manuscript has greatly benefited from the constructive and helpful comments of two reviewers. The final version of the manuscript was carefully read by Dr. Christopher Loretz, to whom we are grateful. This study was partially supported by Grants-in-Aid from the Japan Society for the Promotion of Science to MN, MM, and YS, the NF-Hadal Environmental Science Education Program from the Nippon Foundation to TPS, the Sasakawa Scientific Research Grant from The Japan Science Society to YS, and NIG (National Institute of Genetics, Japan) postdoctoral fellowship to YS.
PY - 2010/8/19
Y1 - 2010/8/19
N2 - Background: Mitochondrial (mt) gene arrangement has been highly conserved among vertebrates from jawless fishes to mammals for more than 500 million years. It remains unclear, however, whether such long-term persistence is a consequence of some constraints on the gene order.Results: Based on the analysis of codon usage and tRNA gene positions, we suggest that tRNA gene order of the typical vertebrate mt-genomes may be important for their translational efficiency. The vertebrate mt-genome encodes 2 rRNA, 22 tRNA, and 13 transmembrane proteins consisting mainly of hydrophobic domains. We found that the tRNA genes specifying the hydrophobic residues were positioned close to the control region (CR), where the transcription efficiency is estimated to be relatively high. Using 47 vertebrate mt-genome sequences representing jawless fishes to mammals, we further found a correlation between codon usage and tRNA gene positions, implying that highly-used tRNA genes are located close to the CR. In addition, an analysis considering the asymmetric nature of mtDNA replication suggested that the tRNA loci that remain in single-strand for a longer time tend to have more guanine and thymine not suffering deamination mutations in their anticodon sites.Conclusions: Our analyses imply the existence of translational constraint acting on the vertebrate mt-gene arrangement. Such translational constraint, together with the deamination-related constraint, may have contributed to long-term maintenance of gene order.
AB - Background: Mitochondrial (mt) gene arrangement has been highly conserved among vertebrates from jawless fishes to mammals for more than 500 million years. It remains unclear, however, whether such long-term persistence is a consequence of some constraints on the gene order.Results: Based on the analysis of codon usage and tRNA gene positions, we suggest that tRNA gene order of the typical vertebrate mt-genomes may be important for their translational efficiency. The vertebrate mt-genome encodes 2 rRNA, 22 tRNA, and 13 transmembrane proteins consisting mainly of hydrophobic domains. We found that the tRNA genes specifying the hydrophobic residues were positioned close to the control region (CR), where the transcription efficiency is estimated to be relatively high. Using 47 vertebrate mt-genome sequences representing jawless fishes to mammals, we further found a correlation between codon usage and tRNA gene positions, implying that highly-used tRNA genes are located close to the CR. In addition, an analysis considering the asymmetric nature of mtDNA replication suggested that the tRNA loci that remain in single-strand for a longer time tend to have more guanine and thymine not suffering deamination mutations in their anticodon sites.Conclusions: Our analyses imply the existence of translational constraint acting on the vertebrate mt-gene arrangement. Such translational constraint, together with the deamination-related constraint, may have contributed to long-term maintenance of gene order.
UR - http://www.scopus.com/inward/record.url?scp=77955700679&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955700679&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-479
DO - 10.1186/1471-2164-11-479
M3 - Article
C2 - 20723209
AN - SCOPUS:77955700679
SN - 1471-2164
VL - 11
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 479
ER -