Transverse profile and three-dimensional spin canting of a Majorana state in carbon nanotubes

Lars Milz, Wataru Izumida, Milena Grifoni, Magdalena Marganska

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The full spatial 3D profile of Majorana bound states (MBS) in a nanowirelike setup featuring a semiconducting carbon nanotube (CNT) as the central element is discussed. By atomic tight-binding calculations, we show that the chiral nature of the CNT lattice is imprinted in the MBS wave function which has a helical structure, anisotropic in the transverse direction. The local spin-canting angle displays a similar spiral pattern, varying around the CNT circumference. We reconstruct the intricate 3D profile of the MBS wave function analytically, using an effective low-energy Hamiltonian accounting both for the electronic spin and valley degrees of freedom of the CNT. In our model, the four components of the Majorana spinor are related by the three symmetries of our Bogoliubov-de Gennes Hamiltonian, reducing the number of independent components to one. A Fourier transform analysis uncovers the presence of three contributions to the MBS, one from the Γ-point and one from each of the Fermi points, with further complexity added by the presence of two valley states in each contribution.

Original languageEnglish
Article number155417
JournalPhysical Review B
Issue number15
Publication statusPublished - 2019 Oct 16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Transverse profile and three-dimensional spin canting of a Majorana state in carbon nanotubes'. Together they form a unique fingerprint.

Cite this