Abstract
Objectives Methionine addiction is a fundamental and general hallmark of cancer caused by enhanced methyl flux. In the present study, we effected a novel methionine-methylation blockade to target a patient-derived orthotopic xenograft model of pancreatic cancer. Methods The pancreatic cancer patient-derived orthotopic xenograft mouse models were randomized into 6 groups of 8 mice each and treated for 2 weeks: untreated control; azacitidine; oral recombinant methioninase (o-rMETase); o-rMETase plus cycloleucine; o-rMETase plus cycloleucine plus azacitidine (triple-methyl blockade therapy); and gemcitabine (positive control). Results Triple-methyl blockade therapy arrested tumor growth (mean relative tumor volume, 1.03 [standard deviation, 0.36]) and was significantly more effective compared with azacitidine (P = 0.0001); o-rMETase (P = 0.007); or o-rMETase plus cycloleucine (P = 0.04). Gemcitabine alone also inhibited but did not arrest tumor growth (mean relative tumor volume, 1.50 [standard deviation, 0.30]). The percentage of cancer cells that were negative for 5-methylcytosine staining in immunohistochemistry, indicating reduction of DNA methylation, increased with triple-methyl blockade therapy (37.5%), compared with gemcitabine (1.8%); o-rMETase (2.8%); azacitidine (9.0%); or o-rMETase plus cycloleucine (10.6%). Conclusions This new concept of triple-methyl blockade therapy has clinical potential for pancreatic cancer, which is currently a recalcitrant disease.
Original language | English |
---|---|
Pages (from-to) | 93-98 |
Number of pages | 6 |
Journal | Pancreas |
Volume | 50 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- azacitidine
- cycloleucine
- DNA methylation
- pancreatic cancer
- recombinant methioninase
- S-Adenosylmethionine