TY - JOUR
T1 - Twisted fiber microfluidics
T2 - a cutting-edge approach to 3D spiral devices
AU - Kato, Shunsuke
AU - Carlson, Daniel W.
AU - Shen, Amy Q.
AU - Guo, Yuanyuan
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - The development of 3D spiral microfluidics has opened new avenues for leveraging inertial focusing to analyze small fluid volumes, thereby advancing research across chemical, physical, and biological disciplines. While traditional straight microchannels rely solely on inertial lift forces, the novel spiral geometry generates Dean drag forces, eliminating the necessity for external fields in fluid manipulation. Nevertheless, fabricating 3D spiral microfluidics remains a labor-intensive and costly endeavor, hindering its widespread adoption. Moreover, conventional lithographic methods primarily yield 2D planar devices, thereby limiting the selection of materials and geometrical configurations. To address these challenges, this work introduces a streamlined fabrication method for 3D spiral microfluidic devices, employing rotational force within a miniaturized thermal drawing process, termed as mini-rTDP. This innovation allows for rapid prototyping of twisted fiber-based microfluidics featuring versatility in material selection and heightened geometric intricacy. To validate the performance of these devices, we combined computational modeling with microtomographic particle image velocimetry (μTPIV) to comprehensively characterize the 3D flow dynamics. Our results corroborate the presence of a steady secondary flow, underscoring the effectiveness of our approach. Our 3D spiral microfluidics platform paves the way for exploring intricate microflow dynamics, with promising applications in areas such as drug delivery, diagnostics, and lab-on-a-chip systems. [Figure not available: see fulltext.]
AB - The development of 3D spiral microfluidics has opened new avenues for leveraging inertial focusing to analyze small fluid volumes, thereby advancing research across chemical, physical, and biological disciplines. While traditional straight microchannels rely solely on inertial lift forces, the novel spiral geometry generates Dean drag forces, eliminating the necessity for external fields in fluid manipulation. Nevertheless, fabricating 3D spiral microfluidics remains a labor-intensive and costly endeavor, hindering its widespread adoption. Moreover, conventional lithographic methods primarily yield 2D planar devices, thereby limiting the selection of materials and geometrical configurations. To address these challenges, this work introduces a streamlined fabrication method for 3D spiral microfluidic devices, employing rotational force within a miniaturized thermal drawing process, termed as mini-rTDP. This innovation allows for rapid prototyping of twisted fiber-based microfluidics featuring versatility in material selection and heightened geometric intricacy. To validate the performance of these devices, we combined computational modeling with microtomographic particle image velocimetry (μTPIV) to comprehensively characterize the 3D flow dynamics. Our results corroborate the presence of a steady secondary flow, underscoring the effectiveness of our approach. Our 3D spiral microfluidics platform paves the way for exploring intricate microflow dynamics, with promising applications in areas such as drug delivery, diagnostics, and lab-on-a-chip systems. [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85182694986&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182694986&partnerID=8YFLogxK
U2 - 10.1038/s41378-023-00642-9
DO - 10.1038/s41378-023-00642-9
M3 - Article
AN - SCOPUS:85182694986
SN - 2055-7434
VL - 10
JO - Microsystems and Nanoengineering
JF - Microsystems and Nanoengineering
IS - 1
M1 - 14
ER -