TY - GEN
T1 - Ultra-cooling heat transfer characteristics using cryogenic micro-solid nitrogen spray
AU - Oh, U.
AU - Ishimoto, Jun
AU - Harada, Naoki
AU - Tan, Daisuke
PY - 2012
Y1 - 2012
N2 - The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed CFD based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultrahigh heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles.
AB - The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed CFD based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultrahigh heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles.
UR - http://www.scopus.com/inward/record.url?scp=84892632138&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892632138&partnerID=8YFLogxK
U2 - 10.1115/HT2012-58494
DO - 10.1115/HT2012-58494
M3 - Conference contribution
AN - SCOPUS:84892632138
SN - 9780791844786
T3 - ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
SP - 531
EP - 538
BT - ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
T2 - ASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Y2 - 8 July 2012 through 12 July 2012
ER -