TY - JOUR
T1 - Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy
AU - Okabe, Chie
AU - Nakabayashi, Takakazu
AU - Inokuchi, Yoshiya
AU - Nishi, Nobuyuki
AU - Sekiya, Hiroshi
PY - 2004/11/15
Y1 - 2004/11/15
N2 - Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S1(n, π*) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S 1(π, π*) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S1(n, π*) state, occur on a time scale less than a few hundred femtoseconds from the S1(π, π*) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S1(π, π*) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S1(π, π*) to S1(π, π*) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.
AB - Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S1(n, π*) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S 1(π, π*) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S1(n, π*) state, occur on a time scale less than a few hundred femtoseconds from the S1(π, π*) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S1(π, π*) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S1(π, π*) to S1(π, π*) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.
UR - http://www.scopus.com/inward/record.url?scp=10844291888&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=10844291888&partnerID=8YFLogxK
U2 - 10.1063/1.1801991
DO - 10.1063/1.1801991
M3 - Article
C2 - 15538864
AN - SCOPUS:10844291888
SN - 0021-9606
VL - 121
SP - 9436
EP - 9442
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 19
ER -