TY - JOUR
T1 - Ultrafine grain refinement of biomedical Co-29Cr-6Mo alloy during conventional hot-compression deformation
AU - Yamanaka, Kenta
AU - Mori, Manami
AU - Kurosu, Shingo
AU - Matsumoto, Hiroaki
AU - Chiba, Akihiko
N1 - Funding Information:
This research was supported by the Cooperation of Innovative Technology and Advanced Research in Evolutional Area under the Ministry of Education, Culture, Sports, Science and Technology (Tokyo, Japan).
PY - 2009
Y1 - 2009
N2 - In order to examine the microstructural evolution during hot-compression deformation of the biomedical Co-29Cr-6Mo (weight percent) alloy without the addition of Ni, hot-compression tests have been conducted at deformation temperatures ranging from 1050 °C to 1200 °C at various strain rates of 10-3 to 10 s-1. The grain refinement due to dynamic recrystallization (DRX) was identified under all deformation conditions by means of field-emission scanning electron microscopy/electron backscattered diffraction (FESEM/EBSD) and transmission electron microscopy (TEM) observations. Although the DRX grain size (d) of the deformed specimens considerably decreased with an increasing Zener-Hollomon (Z) parameter at strain rates ranging from 10-3 to 0.1 s-1, a grain size coarser than that predicted from the d-Z relation was obtained at strain rates of 1.0 and 10 s-1. An ultrafine-grained microstructure with a grain size of approximately 0.6 μm was obtained under deformation at 1050 °C at 0.1 s-1, from an initial grain size of 40 μ m. The grain refinement to a submicron scale of biomedical Co-Cr-Mo alloys has been achieved with hot deformation by ∼60 pct due to DRX, in which the bulging mechanism is not operative. The ultrafine grains obtained due to DRX without bulging is closely related to the considerably low stacking-fault energy (SFE) of the Co-Cr-Mo alloy at deformation temperatures.
AB - In order to examine the microstructural evolution during hot-compression deformation of the biomedical Co-29Cr-6Mo (weight percent) alloy without the addition of Ni, hot-compression tests have been conducted at deformation temperatures ranging from 1050 °C to 1200 °C at various strain rates of 10-3 to 10 s-1. The grain refinement due to dynamic recrystallization (DRX) was identified under all deformation conditions by means of field-emission scanning electron microscopy/electron backscattered diffraction (FESEM/EBSD) and transmission electron microscopy (TEM) observations. Although the DRX grain size (d) of the deformed specimens considerably decreased with an increasing Zener-Hollomon (Z) parameter at strain rates ranging from 10-3 to 0.1 s-1, a grain size coarser than that predicted from the d-Z relation was obtained at strain rates of 1.0 and 10 s-1. An ultrafine-grained microstructure with a grain size of approximately 0.6 μm was obtained under deformation at 1050 °C at 0.1 s-1, from an initial grain size of 40 μ m. The grain refinement to a submicron scale of biomedical Co-Cr-Mo alloys has been achieved with hot deformation by ∼60 pct due to DRX, in which the bulging mechanism is not operative. The ultrafine grains obtained due to DRX without bulging is closely related to the considerably low stacking-fault energy (SFE) of the Co-Cr-Mo alloy at deformation temperatures.
UR - http://www.scopus.com/inward/record.url?scp=67650970080&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650970080&partnerID=8YFLogxK
U2 - 10.1007/s11661-009-9879-0
DO - 10.1007/s11661-009-9879-0
M3 - Article
AN - SCOPUS:67650970080
SN - 1073-5623
VL - 40
SP - 1980
EP - 1994
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 8
ER -