Uncovering the Mechanism of Size Effect on the Thermomechanical Properties of Highly Cross-Linked Epoxy Resins

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Epoxy resins are widely used as matrix resins, especially for carbon-fiber-reinforced plastic, due to their outstanding physical and mechanical properties. To date, most research into cross-linking processes using simulation has considered only a distance-based criterion to judge the probability of reaction. In this work, a new algorithm was developed for use with the large-scale atomic/molecular massively parallel simulator (LAMMPS) simulation package to study the cross-linking process; this new approach combines both a distance-based criterion and several kinetic criteria to identify whether the reaction has occurred. Using this simulation framework, we investigated the effect of model size on predicted thermomechanical properties of three different structural systems: Diglycidyl ether of bisphenol A (DGEBA)/4,4′-diaminodiphenyl sulfone (4,4′-DDS), DGEBA/diethylenetriamine (DETA), and tetraglycidyl diaminodiphenylmethane (TGDDM)/4,4′-DDS. Derived values of gel point, volume shrinkage, and cross-linked resin density were found to be insensitive to model size in these three systems. Other thermomechanical properties, i.e., glass-transition temperature, Young's modulus, and yield stress, were found to reach stable values for systems larger than a¼40 000 atoms for both DGEBA/4,4′-DDS and DGEBA/DETA. However, these same properties modeled for TGDDM/4,4′-DDS did not stabilize until the system size reached 50 000 atoms. Our results provide general guidelines for simulation system size and procedures to more accurately predict the thermomechanical properties of epoxy resins.

Original languageEnglish
Pages (from-to)2593-2607
Number of pages15
JournalJournal of Physical Chemistry B
Issue number13
Publication statusPublished - 2022 Apr 7


Dive into the research topics of 'Uncovering the Mechanism of Size Effect on the Thermomechanical Properties of Highly Cross-Linked Epoxy Resins'. Together they form a unique fingerprint.

Cite this