Use of images in internet photo sharing sites for example-based super-resolution

Satoshi Kondo, Hanieh Taipalus, Tadamasa Tomat, Takafumi Aoki

Research output: Contribution to journalArticlepeer-review


Example-based super-resolution is an image interpolation algorithm that uses a database of training images to create plausible high-frequency details in zoomed images. The algorithm is fairly simple; however its performance heavily depends on the database. In particular, when the characteristics of a target image to be magnified are different from the training images, the quality of the super-resolved image degrades. By creating a database consisting of a few training images that closely resemble the target image, we have solved the above problem and improved the performance of example-based super-resolution. This is done by transforming selected images which are downloaded from Internet photo sharing sites, to match their characteristics with those of the target image before adding them to the database. The advantage of this method is that by skillfully creating a database of suitable training images, we are able to improve the quality of the super-resolved image.

Original languageEnglish
Pages (from-to)1836-1839
Number of pages4
JournalKyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers
Issue number11
Publication statusPublished - 2008 Nov


Dive into the research topics of 'Use of images in internet photo sharing sites for example-based super-resolution'. Together they form a unique fingerprint.

Cite this