TY - JOUR
T1 - Variation of the charge dynamics in bandwidth- and filling-controlled metal-insulator transitions of pyrochlore-type molybdates
AU - Kézsmárki, I.
AU - Hanasaki, N.
AU - Watanabe, K.
AU - Iguchi, S.
AU - Taguchi, Y.
AU - Miyasaka, S.
AU - Tokura, Y.
PY - 2006
Y1 - 2006
N2 - The systematics of the bandwidth- and filling-controlled metal-insulator transitions (MITs) have been investigated for R2 Mo2 O7 family (R=Nd, Sm, Eu, Gd, Dy, and Ho) by infrared spectroscopy. The substantial role of electron correlation in driving the MIT is verified. With changing the R ionic radius (r) or equivalently the one-electron bandwidth (W), the MIT occurs in a continuous manner at rc ≈ r (R=Gd). The T=0 K gap continuously vanishes as Δ (rc -r), while at the metallic side the linear decrease of Drude weight is followed toward rc. In the metallic compounds, some of the infrared-active phonon modes show remarkably large Fano asymmetry correlating with the Drude weight. These Mo-O-Mo bending modes strongly couple to the conduction electrons via effective modulation of the bandwidth. Even for r rc a minimal level of hole doping closes the correlation gap, for example, the barely insulating Gd2 Mo2 O7 is turned to an incoherent metal by 5% partial substitution of Gd3+ with Ca2+. However, even on further doping no coherent electronic states are formed, indicating the role of the disorder-induced localization effect besides the dominant correlation effects.
AB - The systematics of the bandwidth- and filling-controlled metal-insulator transitions (MITs) have been investigated for R2 Mo2 O7 family (R=Nd, Sm, Eu, Gd, Dy, and Ho) by infrared spectroscopy. The substantial role of electron correlation in driving the MIT is verified. With changing the R ionic radius (r) or equivalently the one-electron bandwidth (W), the MIT occurs in a continuous manner at rc ≈ r (R=Gd). The T=0 K gap continuously vanishes as Δ (rc -r), while at the metallic side the linear decrease of Drude weight is followed toward rc. In the metallic compounds, some of the infrared-active phonon modes show remarkably large Fano asymmetry correlating with the Drude weight. These Mo-O-Mo bending modes strongly couple to the conduction electrons via effective modulation of the bandwidth. Even for r rc a minimal level of hole doping closes the correlation gap, for example, the barely insulating Gd2 Mo2 O7 is turned to an incoherent metal by 5% partial substitution of Gd3+ with Ca2+. However, even on further doping no coherent electronic states are formed, indicating the role of the disorder-induced localization effect besides the dominant correlation effects.
UR - http://www.scopus.com/inward/record.url?scp=33645471186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645471186&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.73.125122
DO - 10.1103/PhysRevB.73.125122
M3 - Article
AN - SCOPUS:33645471186
SN - 1098-0121
VL - 73
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 12
M1 - 125122
ER -