TY - JOUR
T1 - Vibrationally resolved C 1s photoionization cross section of CF4
AU - Patanen, M.
AU - Kooser, K.
AU - Argenti, L.
AU - Ayuso, D.
AU - Kimura, M.
AU - Mondal, S.
AU - Plésiat, E.
AU - Palacios, A.
AU - Sakai, K.
AU - Travnikova, O.
AU - Decleva, P.
AU - Kukk, E.
AU - Miron, C.
AU - Ueda, K.
AU - Martín, F.
PY - 2014/6/28
Y1 - 2014/6/28
N2 - The differential photoionization cross section ratio (ν = 1)/(ν = 0) for the symmetric stretching mode in the C 1s photoionization of CF4 was studied both theoretically and experimentally. We observed this ratio to differ from the Franck-Condon ratio and to be strongly dependent on the photon energy, even far from the photoionization threshold. The density-functional theory computations show that the ratio is significantly modulated by the diffraction of the photoelectrons by the neighbouring atoms at high photon energies. At lower energies, the interpretation of the first very strong maximum observed about 60eV above the photoionization threshold required detailed calculations of the absolute partial cross sections, which revealed that the absolute cross section has two maxima at lower energies, which turn into one maximum in the cross section ratio because the maxima appear at slightly different energies in ν = 1 and ν = 0 cross sections. These two strong, low-energy continuum resonances originate from the trapping of the continuum wavefunction in the molecular potential of the surrounding fluorine atoms and from the outgoing electron scattering by them.
AB - The differential photoionization cross section ratio (ν = 1)/(ν = 0) for the symmetric stretching mode in the C 1s photoionization of CF4 was studied both theoretically and experimentally. We observed this ratio to differ from the Franck-Condon ratio and to be strongly dependent on the photon energy, even far from the photoionization threshold. The density-functional theory computations show that the ratio is significantly modulated by the diffraction of the photoelectrons by the neighbouring atoms at high photon energies. At lower energies, the interpretation of the first very strong maximum observed about 60eV above the photoionization threshold required detailed calculations of the absolute partial cross sections, which revealed that the absolute cross section has two maxima at lower energies, which turn into one maximum in the cross section ratio because the maxima appear at slightly different energies in ν = 1 and ν = 0 cross sections. These two strong, low-energy continuum resonances originate from the trapping of the continuum wavefunction in the molecular potential of the surrounding fluorine atoms and from the outgoing electron scattering by them.
KW - DFT
KW - PLEIADES
KW - electron diffraction
KW - electron spectroscopy
KW - photoionzation cross section
KW - synchrotron radiation
UR - http://www.scopus.com/inward/record.url?scp=84902344240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902344240&partnerID=8YFLogxK
U2 - 10.1088/0953-4075/47/12/124032
DO - 10.1088/0953-4075/47/12/124032
M3 - Article
AN - SCOPUS:84902344240
SN - 0953-4075
VL - 47
JO - Journal of Physics B: Atomic, Molecular and Optical Physics
JF - Journal of Physics B: Atomic, Molecular and Optical Physics
IS - 12
M1 - 124032
ER -