Abstract
TiO2 and SrTiO3 codoped with antimony and chromium showed intense absorption bands in the visible light region and possessed 2.2 and 2.4 eV of energy gaps, respectively. TiO2 codoped with antimony and chromium evolved O2 from an aqueous silver nitrate solution under visible light irradiation, while SrTiO3 codoped with antimony and chromium evolved H2 from an aqueous methanol solution. The activity of TiO2 photocatalyst codoped with antimony and chromium was remarkably higher than that of TiO2 doped with only chromium. It was due to that the charge balance was kept by codoping of Sb5+ and Cr3+ ions, resulting in the suppression of formation of Cr6+ ions and oxygen defects in the lattice which should work as effectively nonradiative recombination centers between photogenerated electrons and holes.
Original language | English |
---|---|
Pages (from-to) | 5029-5034 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry B |
Volume | 106 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2002 May 16 |