Abstract
We prove the existence of the wave operator for the system of the massive Dirac-Klein-Gordon equations in three space dimensions xεR3∫ (∂t+α·∇;+iMβ)+ψ= λθβψ, (∂2t-Δ+m 2)θ=μψ*βψ, where the masses m, M>0. We prove that for the small final data φ+ ε(H 3/2+μ1)4+(θ1+, θ2+) ε H2+μ,1 with μ=5/4-5/2q and 90/37<q<6, there exists a unique global solution for system (1) with the final state conditions ∥VD,M(-t)ψ(t)-ψ +∥H3/2+μ1→0 and ∥VKG,m(-t) (φ(t) 〈i∇〉m-1∂tφ(t))- (φ1+ 〈i∇〉m -1φ2+)∥H2+μ1→0 as t-∞.
Original language | English |
---|---|
Pages (from-to) | 896-910 |
Number of pages | 15 |
Journal | Mathematical Methods in the Applied Sciences |
Volume | 34 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2011 May 30 |
Keywords
- Dirac-Klein-Gordon equations
- scattering problem
- wave operator