Wavefront engineered light needle microscopy for axially resolved rapid volumetric imaging

Yuichi Kozawa, Tomoya Nakamura, Yuuki Uesugi, Shunichi Sato

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Increasing the acquisition speed of three-dimensional volumetric images is important- particularly in biological imaging-to unveil the structural dynamics and functionalities of specimens in detail. In conventional laser scanning fluorescence microscopy, volumetric images are constructed from optical sectioning images sequentially acquired by changing the observation plane, limiting the acquisition speed. Here, we present a novel method to realize volumetric imaging from two-dimensional raster scanning of a light needle spot without sectioning, even in the traditional framework of laser scanning microscopy. Information from multiple axial planes is simultaneously captured using wavefront engineering for fluorescence signals, allowing us to readily survey the entire depth range while maintaining spatial resolution. This technique is applied to real-time and video-rate three-dimensional tracking of micrometer-sized particles, as well as the prompt visualization of thick fixed biological specimens, offering substantially faster volumetric imaging.

Original languageEnglish
Pages (from-to)1702-1717
Number of pages16
JournalBiomedical Optics Express
Issue number3
Publication statusPublished - 2022 Mar

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Wavefront engineered light needle microscopy for axially resolved rapid volumetric imaging'. Together they form a unique fingerprint.

Cite this