A note on construction of nonnegative initial data inducing unbounded solutions to some two-dimensional Keller-Segel systems

Kentaro Fujie, Jie Jiang

研究成果: Article査読

抄録

It was shown that unbounded solutions of the Neumann initial-boundary value problem to the two-dimensional Keller-Segel system can be induced by initial data having large negative energy if the total mass Λ ∈ (4π, ∞) \ 4π · N and an example of such an initial datum was given for some transformed system and its associated energy in Horstmann-Wang (2001). In this work, we provide an alternative construction of nonnegative nonradially symmetric initial data enforcing unbounded solutions to the original Keller-Segel model.

本文言語English
ページ(範囲)1-12
ページ数12
ジャーナルMathematics In Engineering
4
6
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 応用数学
  • 数理物理学
  • 分析

フィンガープリント

「A note on construction of nonnegative initial data inducing unbounded solutions to some two-dimensional Keller-Segel systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル