A Simple and Accurate CNN for Iris Recognition

Shokei Kawakami, Hiroya Kawai, Koichi Ito, Takafumi Aoki, Yoshiko Yasumura, Masakazu Fujio, Yosuke Kaga, Kenta Takahashi

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

1 被引用数 (Scopus)

抄録

Iris recognition using deep learning is a new approach in iris recognition, and many methods have been proposed so far. We consider a simple and accurate Convolutional Neural Network (CNN) as a baseline for iris recognition in contrast to the increasingly complex CNN-based iris recognition methods. In this paper, we propose a method for matching normalized iris images by dividing the iris into four regions and extracting features from each region using CNN. To reduce the influence of non-iris regions such as eyelids and eyelashes, we improve the recognition accuracy by selecting regions for training, calculating weighted matching scores based on iris regions, introducing data augmentation suitable for iris images, and introducing an attention mechanism. Through a set of experiments using the public iris image database, we demonstrate that the proposed method exhibits higher recognition accuracy than OSIRIS and other CNNs.

本文言語英語
ホスト出版物のタイトルProceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1566-1571
ページ数6
ISBN(電子版)9786165904773
DOI
出版ステータス出版済み - 2022
イベント2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 - Chiang Mai, タイ
継続期間: 2022 11月 72022 11月 10

出版物シリーズ

名前Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022

会議

会議2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
国/地域タイ
CityChiang Mai
Period22/11/722/11/10

フィンガープリント

「A Simple and Accurate CNN for Iris Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル