Assessment of Deep Learning Models Trained Using Global Remote Sensing Imagery in Real-Context Emergency Response

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

Remote sensing and deep learning have been integrated to solve multiple problems, including building damage assessment. With rapid development in both fields, deep learning and remote sensing can play a greater role in damage mapping, specifically in rapid damage assessment, to support emergency response efforts. Deep learning model evaluation is generally based on a statistical split separating training and testing sets of the same data distribution. Although this enables the evaluation of the model performance, this scheme does not disclose the ability of the model to perform in data obtained from different distributions, which is often the case in real-context disaster emergency response. This study evaluates the model generalization in emergency response scenarios. The results show that the current deep learning model has a high performance in in-domain testing yet experiences a drop of up to 53(%) in F1 in realistic applications. Future studies should focus on enhancing the model transferability, including using domain adaptation techniques and harnessing multi-modal features.

本文言語英語
ホスト出版物のタイトルIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1736-1740
ページ数5
ISBN(電子版)9798350360325
DOI
出版ステータス出版済み - 2024
イベント2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, ギリシャ
継続期間: 2024 7月 72024 7月 12

出版物シリーズ

名前International Geoscience and Remote Sensing Symposium (IGARSS)

会議

会議2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
国/地域ギリシャ
CityAthens
Period24/7/724/7/12

フィンガープリント

「Assessment of Deep Learning Models Trained Using Global Remote Sensing Imagery in Real-Context Emergency Response」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル