Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes

Kevin Zheng, Jeffrey S. Smith, Dylan S. Eiger, Anmol Warman, Issac Choi, Christopher C. Honeycutt, Noelia Boldizsar, Jaimee N. Gundry, Thomas F. Pack, Asuka Inoue, Marc G. Caron, Sudarshan Rajagopal

研究成果: ジャーナルへの寄稿学術論文査読

8 被引用数 (Scopus)

抄録

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and signal through the proximal effectors, G proteins and β-arrestins, to influence nearly every biological process. The G protein and β-arrestin signaling pathways have largely been considered separable; however, direct interactions between Gα proteins and β-arrestins have been described that appear to be part of a distinct GPCR signaling pathway. Within these complexes, Gαi/o, but not other Gα protein subtypes, directly interacts with β-arrestin, regardless of the canonical Gα protein that is coupled to the GPCR. Here, we report that the endogenous biased chemokine agonists of CXCR3 (CXCL9, CXCL10, and CXCL11), together with two small-molecule biased agonists, differentially formed Gαi:β-arrestin complexes. Formation of the Gαi:β-arrestin complexes did not correlate well with either G protein activation or β-arrestin recruitment. β-arrestin biosensors demonstrated that ligands that promoted Gαi:β-arrestin complex formation generated similar β-arrestin conformations. We also found that Gαi:β-arrestin complexes did not couple to the mitogen-activated protein kinase ERK, as is observed with other receptors such as the V2 vasopressin receptor, but did couple with the clathrin adaptor protein AP-2, which suggests context-dependent signaling by these complexes. These findings reinforce the notion that Gαi:β-arrestin complex formation is a distinct GPCR signaling pathway and enhance our understanding of the spectrum of biased agonism.

本文言語英語
論文番号eabg5203
ジャーナルScience Signaling
15
726
DOI
出版ステータス出版済み - 2022 3月 22

フィンガープリント

「Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル