Bit-size estimates for triangular sets in positive dimension

Xavier Dahan, Abdulilah Kadri, Eric Schost

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We give bit-size estimates for the coefficients appearing in triangular sets describing positive-dimensional algebraic sets defined over ℚ. These estimates are worst case upper bounds; they depend only on the degree and height of the underlying algebraic sets. We illustrate the use of these results in the context of a modular algorithm. This extends the results by the first and the last author, which were confined to the case of dimension 0. Our strategy is to get back to dimension 0 by evaluation and interpolation techniques. Even though the main tool (height theory) remains the same, new difficulties arise to control the growth of the coefficients during the interpolation process.

本文言語English
ページ(範囲)109-135
ページ数27
ジャーナルJournal of Complexity
28
1
DOI
出版ステータスPublished - 2012 2月
外部発表はい

ASJC Scopus subject areas

  • 代数と数論
  • 統計学および確率
  • 数値解析
  • 数学 (全般)
  • 制御と最適化
  • 応用数学

フィンガープリント

「Bit-size estimates for triangular sets in positive dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル