Brain age estimation from T1-weighted images using effective local features

Ryuichi Fujimoto, Koichi Ito, Kai Wu, Kazunori Sato, Yasuyuki Taki, Hiroshi Fukuda, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

11 被引用数 (Scopus)

抄録

Statistical analysis using large-scale brain magnetic resonance (MR) image databases has examined that brain tissues have age-related morphological changes. The age of a subject can be estimated from the brain MR image by evaluating morphological changes with healthy aging. This paper proposes an age estimation method using local features of T1-weighted MR images. The brain local features are defined by volumes of brain tissues parcellated into 1,024 local regions defined by the automated anatomical labeling atlas. This paper also proposes the effective local feature selection method to improve the accuracy of age estimation. We evaluate the accuracy of the proposed method using 1,099 T1-weighted images from a Japanese MR image database. We also analyze effectiveness of each local region for age estimation and discuss its medical implication.

本文言語英語
ホスト出版物のタイトル2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ホスト出版物のサブタイトルSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3028-3031
ページ数4
ISBN(電子版)9781509028092
DOI
出版ステータス出版済み - 2017 9月 13
イベント39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, 大韓民国
継続期間: 2017 7月 112017 7月 15

出版物シリーズ

名前Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN(印刷版)1557-170X

会議

会議39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
国/地域大韓民国
CityJeju Island
Period17/7/1117/7/15

フィンガープリント

「Brain age estimation from T1-weighted images using effective local features」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル