抄録
The 15-puzzle is a puzzle game played with 15 square tiles numbered from 1 to 15 on a 4 × 4 board. It has been popular for generations because of its simplicity and challenge. The (w × h)-puzzle is a generalization of the 15-puzzle, which is played with wh-1 square tiles numbered from 1 to wh-1 on a w × h board. Solving the (w × h)-puzzle is NP-hard, and hence it is valuable to know its solution. In this paper, we apply the concept of zero-knowledge proof to the (w × h)-puzzle. We propose a physical zero-knowledge proof protocol, in which a prover who knows a solution to the (w × h)-puzzle can convince a verifier that the prover knows the solution without revealing any information about it. We also design physical zero-knowledge proof protocols of two token swapping problems closely related to the (w × h)-puzzle.
本文言語 | 英語 |
---|---|
ページ | 11-22 |
ページ数 | 12 |
DOI | |
出版ステータス | 出版済み - 2024 7月 1 |
イベント | 11th ACM Asia Public-Key Cryptography Workshop, APKC 2024, in conjunction with the 19th ACM ASIA Conference on Computer and Communications Security, ACM ASIACCS 2024 - Singapore, シンガポール 継続期間: 2024 7月 2 → … |
会議
会議 | 11th ACM Asia Public-Key Cryptography Workshop, APKC 2024, in conjunction with the 19th ACM ASIA Conference on Computer and Communications Security, ACM ASIACCS 2024 |
---|---|
国/地域 | シンガポール |
City | Singapore |
Period | 24/7/2 → … |