Category mining by heterogeneous data fusion using PdLSI model in a retail service

Tsukasa Ishigaki, Takeshi Takenaka, Yoichi Motomura

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

This paper describes an appropriate category discovery method that simultaneously involves a customer's lifestyle category and item category for the sustainable management of retail services, designated as "category mining". Category mining is realized using a large-scale ID-POS data and customer's questionnaire responses with respect to their lifestyle. For the heterogeneous data fusion, we propose a probabilistic double-latent semantic indexing (PdLSI) model that is an extension of PLSI model. In the PdLSI model, customers and items are classified probabilistically into some latent lifestyle categories and latent item category. Then, understanding of relation between the latent categories and various purchased situations is realized using Bayesian network modeling. This method provides useful knowledge based on a large-scale data for efficient customer relationship management and category management, and can be applicable for other service industries.

本文言語English
ホスト出版物のタイトルProceedings - 10th IEEE International Conference on Data Mining, ICDM 2010
ページ857-862
ページ数6
DOI
出版ステータスPublished - 2010
外部発表はい
イベント10th IEEE International Conference on Data Mining, ICDM 2010 - Sydney, NSW, Australia
継続期間: 2010 12月 142010 12月 17

出版物シリーズ

名前Proceedings - IEEE International Conference on Data Mining, ICDM
ISSN(印刷版)1550-4786

Other

Other10th IEEE International Conference on Data Mining, ICDM 2010
国/地域Australia
CitySydney, NSW
Period10/12/1410/12/17

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Category mining by heterogeneous data fusion using PdLSI model in a retail service」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル