Center manifold reduction for large populations of globally coupled phase oscillators

Hayato Chiba, Isao Nishikawa

研究成果: Article査読

43 被引用数 (Scopus)

抄録

A bifurcation theory for a system of globally coupled phase oscillators is developed based on the theory of rigged Hilbert spaces. It is shown that there exists a finite-dimensional center manifold on a space of generalized functions. The dynamics on the manifold is derived for any coupling functions. When the coupling function is sin θ, a bifurcation diagram conjectured by Kuramoto is rigorously obtained. When it is not sin θ, a new type of bifurcation phenomenon is found due to the discontinuity of the projection operator to the center subspace.

本文言語English
論文番号043103
ジャーナルChaos
21
4
DOI
出版ステータスPublished - 2011 12月 12
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Center manifold reduction for large populations of globally coupled phase oscillators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル