抄録
A bifurcation theory for a system of globally coupled phase oscillators is developed based on the theory of rigged Hilbert spaces. It is shown that there exists a finite-dimensional center manifold on a space of generalized functions. The dynamics on the manifold is derived for any coupling functions. When the coupling function is sin θ, a bifurcation diagram conjectured by Kuramoto is rigorously obtained. When it is not sin θ, a new type of bifurcation phenomenon is found due to the discontinuity of the projection operator to the center subspace.
本文言語 | English |
---|---|
論文番号 | 043103 |
ジャーナル | Chaos |
巻 | 21 |
号 | 4 |
DOI | |
出版ステータス | Published - 2011 12月 12 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学
- 物理学および天文学(全般)
- 応用数学