Change in crystal structure and physical properties of the Multiferroics YMnO3 single crystals by Strong gravitational field

M. Tokuda, M. Weijian, S. Hayami, A. Yoshiasa, T. Mashimo

研究成果: Conference article査読

1 被引用数 (Scopus)

抄録

Many researchers have studied the multiferroicity of the hexagonal RMnO3 (R: rare-earth element) for both applications and fundamental studies. To investigate the relationship between the structure and physical properties of materials, some people apply the chemical pressure effect. The procedure of chemical pressure effect involves substituting rare-earth elements for ones which have a different ionic radius. Mashimo et al. have developed a higherature ultracentrifuge apparatus that can generate extended duration strong gravitational field in excess of 106 G under a wide range of temperatures (up to 500°C). Strong gravitational fields directly act on each atom as a different body force. This can cause the change in crystal structure. Thus, we subjected YMnO3 single crystal to strong gravity experiments (0.78×106 G, 400°C, 2 h) and investigated the resulting changes in the crystal structure and physical properties of the gravity sample. The single crystal four-circle X-ray diffraction measurements revealed the change in the nearest neighboring Mn-Mn and M-O bond distances. The temperature dependence of magnetic susceptibility by SQUID showed the change in the magnetic anisotropy of gravity sample.

本文言語English
論文番号072001
ジャーナルJournal of Physics: Conference Series
807
7
DOI
出版ステータスPublished - 2017 4月 6
外部発表はい
イベント18th International Conference on Strongly Correlated Electron Systems, SCES 2016 - Hangzhou, China
継続期間: 2016 5月 92016 5月 13

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Change in crystal structure and physical properties of the Multiferroics YMnO3 single crystals by Strong gravitational field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル