抄録
We investigate the notion of classical negation from a non-classical perspective. In particular, one aim is to determine what classical negation amounts to in a paracomplete and paraconsistent four-valued setting. We first give a general semantic characterization of classical negation and then consider an axiomatic expansion BD+ of four-valued Belnap–Dunn logic by classical negation. We show the expansion complete and maximal. Finally, we compare BD+ to some related systems found in the literature, specifically a four-valued modal logic of Béziau and the logic of classical implication and a paraconsistent de Morgan negation of Zaitsev.
本文言語 | 英語 |
---|---|
ページ(範囲) | 825-851 |
ページ数 | 27 |
ジャーナル | Studia Logica |
巻 | 103 |
号 | 4 |
DOI | |
出版ステータス | 出版済み - 2015 8月 28 |