Classification of coniferous tree species using aerial hyper spectral observation 2

Katsuya Yabe, Daisuke Kunii, Chinatsu Yonezawa, Sinya Odagawa, Yukio Kosugi, Genya Saito

    研究成果: Conference contribution

    抄録

    Hyper spectral image have 67 bands from visible to near infrared red. The purpose of this study is to make a high accurate classification map of tree species using those data. We study about an effectiveness of hyper spectral observation that has high resolution of wavelength. We evaluate the effectiveness by comparing multi spectral data of an existing satellite. The study area is Field Science Center (FSC) of Tohoku University in Japan. We produce supervised classification. In the process of this study, we extract the coniferous area to classify easily coniferous tree species. We compare hyper spectral data with multi spectral data. There are visually wrong extractions using multi spectral data. Hyper spectral observation is effective to extract the coniferous area. Using extracted area of coniferous tree, we make a classification map of coniferous tree. In the map, we classify successfully among coniferous tree species. It is important to select suitable bands based on a purpose of classification.

    本文言語English
    ホスト出版物のタイトル31st Asian Conference on Remote Sensing 2010, ACRS 2010
    ページ67-72
    ページ数6
    出版ステータスPublished - 2010
    イベント31st Asian Conference on Remote Sensing 2010, ACRS 2010 - Hanoi, Viet Nam
    継続期間: 2010 11月 12010 11月 5

    出版物シリーズ

    名前31st Asian Conference on Remote Sensing 2010, ACRS 2010
    1

    Other

    Other31st Asian Conference on Remote Sensing 2010, ACRS 2010
    国/地域Viet Nam
    CityHanoi
    Period10/11/110/11/5

    ASJC Scopus subject areas

    • コンピュータ ネットワークおよび通信

    フィンガープリント

    「Classification of coniferous tree species using aerial hyper spectral observation 2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル