抄録
The method used to construct the bicovariant bimodule in ref. [CSWW] is applied to examine the structure of the dual algebra and the bicovariant differential calculus of the complex quantum group. The complex quantum group Funq(SL(N, C)) is defined by requiring that it contains Funq(SU(N)) as a subalgebra analogously to the quantum Lorentz group. Analyzing the properties of the fundamental bimodule, we show that the dual algebra has the structure of the twisted product Funq(SU(N))⊗Funq(SU(N))reg*. Then the bicovariant differential calculi on the complex quantum group are constructed.
本文言語 | English |
---|---|
ページ(範囲) | 487-514 |
ページ数 | 28 |
ジャーナル | Communications in Mathematical Physics |
巻 | 151 |
号 | 3 |
DOI | |
出版ステータス | Published - 1993 2月 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学