Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case

Shunsuke Hayashi, Soon Yi Wu, Liping Zhang

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We focus on the convex semi-infinite program with second-order cone constraints (for short, SOCCSIP), which has wide applications such as filter design, robust optimization, and so on. For solving the SOCCSIP, we propose an explicit exchange method, and prove that the algorithm terminates in a finite number of iterations. In the convergence analysis, we do not need to use the special structure of second-order cone (SOC) when the objective or constraint function is strictly convex. However, if both of them are non-strictly convex and constraint function is affine or quadratic, then we have to utilize the SOC complementarity conditions and the spectral factorization techniques associated with Euclidean Jordan algebra. We also show that the obtained output is an approximate optimum of SOCCSIP. We report some numerical results involving the application to the robust optimization in the classical convex semi-infinite program.

本文言語English
ページ(範囲)573-595
ページ数23
ジャーナルJournal of Scientific Computing
68
2
DOI
出版ステータスPublished - 2016 8月 1

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • 数値解析
  • 工学(全般)
  • 計算理論と計算数学
  • 計算数学
  • 応用数学

フィンガープリント

「Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル