Computational customer behavior modeling for knowledge management with an automatic categorization using retail service's datasets

Tsukasa Ishigaki, Takeshi Takenaka, Yoichi Motomura

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

In the retail service, knowledge management with point of sales (POS) data mining is integral to maintaining and improving productivity. The present paper describes a method of computational customer behavior modeling based on real datasets, and we demonstrate some knowledge extractions from the model. The model is constructed by Bayesian network based on a large-scale POS dataset that incorporates customer identification information and questionnaire responses. In addition, we employ an automatic categorization using probabilistic latent semantic indexing (PLSI), because an appropriate categorization of customers and items is needed for construction of a useful model in real services. We identify a number of categories with regard to customer behavior, and demonstrate the efficacy of our knowledge extraction approach for effective service provision and knowledge management.

本文言語English
ホスト出版物のタイトルProceedings - IEEE International Conference on E-Business Engineering, ICEBE 2010
ページ528-533
ページ数6
DOI
出版ステータスPublished - 2010 12月 1
外部発表はい
イベントIEEE International Conference on E-Business Engineering, ICEBE 2010 - Shanghai, China
継続期間: 2010 11月 102010 11月 12

出版物シリーズ

名前Proceedings - IEEE International Conference on E-Business Engineering, ICEBE 2010

Other

OtherIEEE International Conference on E-Business Engineering, ICEBE 2010
国/地域China
CityShanghai
Period10/11/1010/11/12

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Computational customer behavior modeling for knowledge management with an automatic categorization using retail service's datasets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル