Computing persistence modules on commutative ladders of finite type

Emerson G. Escolar, Yasuaki Hiraoka

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

Persistence modules on commutative ladders naturally arise in topological data analysis. It is known that all isomorphism classes of indecomposable modules, which are the counterparts to persistence intervals in the standard setting of persistent homology, can be derived for persistence modules on commutative ladders of finite type. Furthermore, the concept of persistence diagrams can be naturally generalized as functions defined on the Auslander-Reiten quivers of commutative ladders. A previous paper [4] presents an algorithm to compute persistence diagrams by inductively applying echelon form reductions to a given persistence module. In this work, we show that discrete Morse reduction can be generalized to this setting. Given a quiver complex double-struck X, we show that its persistence module H q(double-struck X) is isomorphic to the persistence module H q(double-struck A) of its Morse quiver complex double-struck A. With this preprocessing step, we reduce the computation time by computing H q(double-struck A) instead, since double-struck A is generally smaller in size. We also provide an algorithm to obtain such Morse quiver complexes.

本文言語English
ホスト出版物のタイトルMathematical Software, ICMS 2014 - 4th International Congress, Proceedings
出版社Springer-Verlag
ページ144-151
ページ数8
ISBN(印刷版)9783662441985
DOI
出版ステータスPublished - 2014 1月 1
イベント4th International Congress on Mathematical Software, ICMS 2014 - Seoul, Korea, Republic of
継続期間: 2014 8月 52014 8月 9

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8592 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other4th International Congress on Mathematical Software, ICMS 2014
国/地域Korea, Republic of
CitySeoul
Period14/8/514/8/9

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Computing persistence modules on commutative ladders of finite type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル