CONSTRUCTION OF CONTINUUM FROM A DISCRETE SURFACE BY ITS ITERATED SUBDIVISIONS

Motoko Kotani, Hisashi Naito, Chen Tao

研究成果: Article査読

抄録

Given a trivalent graph in the 3-dimensional Euclidean space, we call it a discrete surface because it has a tangent space at each vertex determined by its neighbor vertices. To abstract a continuum object hidden in the discrete surface, we introduce a subdivisionmethod by applying the Goldberg-Coxeter subdivision and discuss the convergence of a sequence of discrete surfaces defined inductively by the subdivision. We also study the limit set as the continuum geometric object associated with the given discrete surface.

本文言語English
ページ(範囲)229-252
ページ数24
ジャーナルTohoku Mathematical Journal
74
2
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「CONSTRUCTION OF CONTINUUM FROM A DISCRETE SURFACE BY ITS ITERATED SUBDIVISIONS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル