Data mining for materials design: A computational study of single molecule magnet

Hieu Chi Dam, Tien Lam Pham, Tu Bao Ho, Anh Tuan Nguyen, Viet Cuong Nguyen

研究成果: Article査読

13 被引用数 (Scopus)

抄録

We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn4+ Mn 33+ single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn4 + and Mn3 + ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic properties of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.

本文言語English
論文番号044101
ジャーナルJournal of Chemical Physics
140
4
DOI
出版ステータスPublished - 2014 1月 28
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Data mining for materials design: A computational study of single molecule magnet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル