Decidability for left-linear growing term rewriting systems

Takashi Nagaya, Yoshihito Toyama

研究成果: Conference contribution

26 被引用数 (Scopus)

抄録

A term rewriting system is called growing if each variable occurring both the left-hand side and the right-hand side of a rewrite rule occurs at depth zero or one in the left-hand side. Jacquemard showed that the reachability and the sequentiality of linear (i.e., left-right-linear) growing term rewriting systems are decidable. In this paper we show that Jacquemard's result can be extended to left-linear growing rewriting systems that may have right-non-linear rewrite rules. This implies that the reachability and the joinability of some class of right-linear term rewriting systems are decidable, which improves the results for rightground term rewriting systems by Oyamaguchi. Our result extends the class of left-linear term rewriting systems having a decidable call-by-need normalizing strategy. Moreover, we prove that the termination property is decidable for almost orthogonal growing term rewriting systems.

本文言語English
ホスト出版物のタイトルRewriting Techniques and Applications - 10th International Conference, RTA 1999, Proceedings
編集者Paliath Narendran, Michael Rusinowitch
出版社Springer Verlag
ページ256-270
ページ数15
ISBN(印刷版)3540662014, 9783540662013
DOI
出版ステータスPublished - 1999
外部発表はい
イベント10th International Conference on Rewriting Techniques and Applications, RTA 1999 - Trento, Italy
継続期間: 1999 7月 21999 7月 4

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1631
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other10th International Conference on Rewriting Techniques and Applications, RTA 1999
国/地域Italy
CityTrento
Period99/7/299/7/4

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Decidability for left-linear growing term rewriting systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル