Depth Map Estimation from Multi-View Images with Nerf-Based Refinement

Shintaro Ito, Kanta Miura, Koichi Ito, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

1 被引用数 (Scopus)

抄録

In this paper, we propose a method to refine depth maps estimated by Multi-View Stereo (MVS) with Neural Radiance Field (NeRF) optimization to estimate depth maps from multi-view images with high accuracy. MVS estimates the depths on object surfaces with high accuracy, and NeRF estimates the depths at object boundaries with high accuracy. The key ideas of the proposed method are (i) to combine MVS and NeRF to utilize the advantages of both in depth map estimation, (ii) not to require any training process, therefore no training dataset and ground truth are required, and (iii) to use NeRF for depth map refinement. Through a set of experiments using the Redwood-3dscan dataset, we demonstrate the effectiveness of the proposed method compared to conventional depth map estimation methods.

本文言語英語
ホスト出版物のタイトル2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
出版社IEEE Computer Society
ページ2955-2959
ページ数5
ISBN(電子版)9781728198354
DOI
出版ステータス出版済み - 2023
イベント30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, マレーシア
継続期間: 2023 10月 82023 10月 11

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会議

会議30th IEEE International Conference on Image Processing, ICIP 2023
国/地域マレーシア
CityKuala Lumpur
Period23/10/823/10/11

フィンガープリント

「Depth Map Estimation from Multi-View Images with Nerf-Based Refinement」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル