Development of acoustic optics tunable filter and its application to strain sensing system

Michio Kadota, K. Yamada, H. Kobayashi, S. Tanaka

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

A highly accurate strain sensing system has been developed by combining an acoustic optic tunable filter (AOTF), an optical fiber, and fiber Bragg gratings (FBGs). The AOTF is composed of an interdigital transducer (IDT) to generate surface acoustic wave (SAW), a SAW guide, and polarization beam splitters (PBSs) for separating TE and TM modes from a light with both modes and optical waveguides consisting of a Li-diffused layer on a Y-X LiNbO3 substrate. The AOTF outputs only the wavelength of light corresponding to the applied SAW frequency. The AOTF operates as an optical spectrum analyzer by applying the swept SAW frequency to the AOTF. A highly accurate strain sensing system has been contributed by combining the optical fiber, the fiber Bragg gratings (FBGs), and the AOTF used instead of a conventional optical spectrum analyzer. The each FBG has each period of the grating in the fiber. The only wavelength of the light corresponding to the period of grating of FBG reflects when the light with wide range wavelength is inputted. The AOTF measures the reflected wavelength. When the strain is applied to the FBG, the only reflected wavelength corresponding to the strained grating period of its FGB shifts. The strength of the strain can be obtained from the shift value of the wavelengths measured by the AOTF. The place, where the strain is received, can also be measured at the same time by setting up a lot of FBGs having different period of grating. The strain accuracy of 0.9ppm was measured by using this method at the room temperature. But a temperature characteristic of the AOTF is not good, it is necessary to improve the temperature characteristic of this sensing system. Adopting additional FBGs for reference, measured accuracy of standard deviation of 0.63 pm was obtained under the temperature change from -20 to 70°C. This strain sensing system would be able to apply to monitoring or watching a fall of rock, a landslide, an earth quake, a vibration of a building or a bridge, a trespasser, a water level of river, and so on.

本文言語English
ホスト出版物のタイトル2009 18th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2009
DOI
出版ステータスPublished - 2009 12月 1
イベント2009 18th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2009 - Xian, China
継続期間: 2009 8月 232009 8月 27

出版物シリーズ

名前IEEE International Symposium on Applications of Ferroelectrics

Other

Other2009 18th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2009
国/地域China
CityXian
Period09/8/2309/8/27

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「Development of acoustic optics tunable filter and its application to strain sensing system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル