Dynamic spectrum classification by divergence-based kernel machines and its application to the detection of worn-out banknotes

Tsukasa Ishigaki, Tomoyuki Higuchi

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

In the kernel method, the appropriate selection or design of the kernel function is important for the construction of a high-performance classifier. The present paper describes a dynamic spectrum classification method using kernel classifiers with the divergence-based kernel and its application to the detection of worn-out banknotes. We introduce the divergence-based kernel that was proposed as a measure between two probability distributions into the dynamic spectrum classification. The present method is applied to the detection of worn-out banknotes by using acoustic signals for the facilitation of identifying counterfeit banknotes. As a result, the classification performance using the divergence-based kernel is shown to have better performance than those using common kernels such as the Gaussian kernel or the polynomial kernel.

本文言語English
ホスト出版物のタイトル2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
ページ1873-1876
ページ数4
DOI
出版ステータスPublished - 2008 9月 16
外部発表はい
イベント2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP - Las Vegas, NV, United States
継続期間: 2008 3月 312008 4月 4

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Other

Other2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
国/地域United States
CityLas Vegas, NV
Period08/3/3108/4/4

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Dynamic spectrum classification by divergence-based kernel machines and its application to the detection of worn-out banknotes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル