TY - JOUR
T1 - Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment
AU - Yasuda, Jun
AU - Yoshizawa, Shin
AU - Umemura, Shin Ichiro
N1 - Publisher Copyright:
© 2016 The Japan Society of Applied Physics.
PY - 2016/7
Y1 - 2016/7
N2 - Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.
AB - Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.
UR - http://www.scopus.com/inward/record.url?scp=84978741606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978741606&partnerID=8YFLogxK
U2 - 10.7567/JJAP.55.07KF24
DO - 10.7567/JJAP.55.07KF24
M3 - Article
AN - SCOPUS:84978741606
SN - 0021-4922
VL - 55
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 7
M1 - 07KF24
ER -