Enumerating global roundings of an outerplanar graph

Nadia Takki-Chebihi, Takeshi Tokuyama

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Given a connected weighted graph G = (V, E), we consider a hypergraph H G = (V, P G) corresponding to the set of all shortest paths in G. For a given real assignment a on V satisfying 0 ≤ a(v) ≤ 1, a global rounding α with respect to H G is a binary assignment satisfying that |∑ v∈Fa(v)-α(v)| < 1 for every F ∈ P G. Asano et al [1] conjectured that there are at most |V|+1 global roundings for H G. In this paper, we prove that the conjecture holds if G is an outerplanar graph. Moreover, we give a polynomial time algorithm for enumerating all the global roundings of an outerplanar graph.

本文言語English
ページ(範囲)425-433
ページ数9
ジャーナルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2906
出版ステータスPublished - 2003 12月 1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Enumerating global roundings of an outerplanar graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル