Estimating genome-wide gene networks using nonparametric bayesian network models on massively parallel computers

Yoshinori Tamada, Seiya Imoto, Hiromitsu Araki, Masao Nagasaki, Cristin Print, D. Stephen Charnock-Jones, Satoru Miyano

研究成果: Article査読

43 被引用数 (Scopus)

抄録

We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian network structures, existing algorithms cannot be applied to more than a few thousand genes. Our algorithm overcomes this limitation by repeatedly estimating subnetworks in parallel for genes selected by neighbor node sampling. Through numerical simulation, we confirmed that our algorithm outperformed a heuristic algorithm in a shorter time. We applied our algorithm to microarray data from human umbilical vein endothelial cells (HUVECs) treated with siRNAs, to construct a human genome-wide gene network, which we compared to a small gene network estimated for the genes extracted using a traditional bioinformatics method. The results showed that our genome-wide gene network contains many features of the small network, as well as others that could not be captured during the small network estimation. The results also revealed master-regulator genes that are not in the small network but that control many of the genes in the small network. These analyses were impossible to realize without our proposed algorithm.

本文言語English
論文番号5551118
ページ(範囲)683-697
ページ数15
ジャーナルIEEE/ACM Transactions on Computational Biology and Bioinformatics
8
3
DOI
出版ステータスPublished - 2011

ASJC Scopus subject areas

  • バイオテクノロジー
  • 遺伝学
  • 応用数学

フィンガープリント

「Estimating genome-wide gene networks using nonparametric bayesian network models on massively parallel computers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル