Evaluation of Grasp Posture Detection Method using Corneal Reflection Images through a Crowdsourced Experiment

Xiang Zhang, Kaori Ikematsu, Kunihiro Kato, Yuta Sugiura

研究成果: Conference contribution

抄録

To achieve adaptive user interfaces (UI) for smartphones, researchers have been developing sensing methods to detect how a user is holding a smartphone. A variety of promising adaptive UIs have been demonstrated, such as those that automatically switch the displayed content and the position of interactive components in accordance with how the phone is being held. In this paper, we present a follow-up study on ReflecTouch, a state-of-The-Art grasping posture detection method proposed by Zhang et al.That uses corneal reflection images captured by the front camera of a smartphone. We extend the previous work by investigating the performance of this method towards actual use and its potential challenges through a crowdsourced experiment with a large number of participants.

本文言語English
ホスト出版物のタイトルISS 2022 - Companion Proceedings of the 2022 Conference on Interactive Surfaces and Spaces
編集者Craig Anslowx, Judy Kay
出版社Association for Computing Machinery, Inc
ページ9-13
ページ数5
ISBN(電子版)9781450393560
DOI
出版ステータスPublished - 2022 11月 20
外部発表はい
イベント2022 ACM International Conference on Interactive Surfaces and Spaces, ISS 2022 - Wellington, New Zealand
継続期間: 2022 11月 202022 11月 23

出版物シリーズ

名前ISS 2022 - Companion Proceedings of the 2022 Conference on Interactive Surfaces and Spaces

Conference

Conference2022 ACM International Conference on Interactive Surfaces and Spaces, ISS 2022
国/地域New Zealand
CityWellington
Period22/11/2022/11/23

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 人間とコンピュータの相互作用

フィンガープリント

「Evaluation of Grasp Posture Detection Method using Corneal Reflection Images through a Crowdsourced Experiment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル