抄録
In this study, nano-scratch tests were conducted using atomic force microscope (AFM) to clarify the hardness of a tribofilm derived from an additive (Fluid A or Fluid B in automatic-transmission fluid) formed on an SKS3 cold work tool steel substrate surface. Comparisons between nano-indentation hardness tests and AFM nano-scratch tests were performed for each specimen. Prior to these tests, the tribofilms on the SKS3 substrate were examined with energy-dispersive spectroscopy (EDS). In order to calculate the hardness of the tribofilm from the nano-scratch results, we assumed that the AFM diamond tip acted as an abrasive to plough the tribofilm. The phosphorous-derived tribofilm formed from Fluid A was harder than the sulfur-derived tribofilm from Fluid B, and it was calculated that the phosphorous-derived tribofilm was approximately 2.64 GPa and the sulfur-derived tribofilm was 1.89 GPa. After 10 nanoindentation hardness tests on each tribofilm, the maximum indentation depth into the tribofilm formed from Fluid A was approximately 31 nm, while it was approximately 36 nm for Fluid B. These results are qualitatively consistent with the hardness results obtained by the AFM nano-scratch test method.
本文言語 | English |
---|---|
ページ(範囲) | 255-262 |
ページ数 | 8 |
ジャーナル | Tribology Online |
巻 | 16 |
号 | 4 |
DOI | |
出版ステータス | Published - 2021 |
外部発表 | はい |
ASJC Scopus subject areas
- 表面、皮膜および薄膜