TY - JOUR
T1 - Evidence for increased DNA damage repair in the postmortem brain of the high stress-response group of schizophrenia
AU - Shishido, Risa
AU - Kunii, Yasuto
AU - Hino, Mizuki
AU - Izumi, Ryuta
AU - Nagaoka, Atsuko
AU - Hayashi, Hideki
AU - Kakita, Akiyoshi
AU - Tomita, Hiroaki
AU - Yabe, Hirooki
N1 - Funding Information:
This work was supported by Japan Agency for Medical Research and Development (AMED)–JP22dm0207074 (YK), AMED–JP22wm0425019(AK), AMED–JP22wm0425019 (HY); the Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant Number JP19K08053 (YK); the Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant Number JP21H00180 (YK), This study was also supported by the Collaborative Research Project of the Brain Research Institute, Niigata University under Grant Number 22002 (YK).
Publisher Copyright:
Copyright © 2023 Shishido, Kunii, Hino, Izumi, Nagaoka, Hayashi, Kakita, Tomita and Yabe.
PY - 2023
Y1 - 2023
N2 - Background: Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods: We selected the following stress-responsive molecules: interleukin (IL) -1β, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results: We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion: Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.
AB - Background: Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods: We selected the following stress-responsive molecules: interleukin (IL) -1β, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results: We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion: Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.
KW - DNA double-strand break
KW - DNA double-strand break repair by homologous recombination
KW - RNA-Seq
KW - environmental factor
KW - heterogeneity
KW - postmortem brain
KW - schizophrenia
KW - stress
UR - http://www.scopus.com/inward/record.url?scp=85169829221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85169829221&partnerID=8YFLogxK
U2 - 10.3389/fpsyt.2023.1183696
DO - 10.3389/fpsyt.2023.1183696
M3 - Article
AN - SCOPUS:85169829221
SN - 1664-0640
VL - 14
JO - Frontiers in Psychiatry
JF - Frontiers in Psychiatry
M1 - 1183696
ER -