Exploring a potential energy surface by machine learning for characterizing atomic transport

Kenta Kanamori, Kazuaki Toyoura, Junya Honda, Kazuki Hattori, Atsuto Seko, Masayuki Karasuyama, Kazuki Shitara, Motoki Shiga, Akihide Kuwabara, Ichiro Takeuchi

研究成果: Article査読

21 被引用数 (Scopus)

抄録

We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

本文言語English
論文番号125124
ジャーナルPhysical Review B
97
12
DOI
出版ステータスPublished - 2018 3月 15
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Exploring a potential energy surface by machine learning for characterizing atomic transport」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル