Extraction of binarized neural network architecture and secret parameters using side-channel information

Ville Yli-Mäyry, Akira Ito, Naofumi Homma, Shivam Bhasin, Dirmanto Jap

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

13 被引用数 (Scopus)

抄録

In recent years, neural networks have been applied to various applications. To speed up the evaluation, a method using binarized network weights has been introduced, facilitating extremely efficient hardware implementation. Using electromagnetic (EM) side-channel analysis techniques, this study presents a framework of model extraction from practical binarized neural network (BNN) hardware. The target BNN hardware is generated and synthesized using open-source and commercial high-level synthesis tools GUINNESS and Xilinx SDSoC, respectively. With the hardware implemented on an up-to-date FPGA chip, we demonstrate how the layers can be identified from a single EM trace measured during the network evaluation, and we also demonstrate how an attacker may use side-channel attacks to recover secret weights used in the network.

本文言語英語
ホスト出版物のタイトル2021 IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728192017
DOI
出版ステータス出版済み - 2021
イベント53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Daegu, 大韓民国
継続期間: 2021 5月 222021 5月 28

出版物シリーズ

名前Proceedings - IEEE International Symposium on Circuits and Systems
2021-May
ISSN(印刷版)0271-4310

会議

会議53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021
国/地域大韓民国
CityDaegu
Period21/5/2221/5/28

フィンガープリント

「Extraction of binarized neural network architecture and secret parameters using side-channel information」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル