Eyeglass Frame Segmentation for Face Image Processing

Kanta Miura, Takamichi Miyamoto, Kazuyuki Sakurai, Koichi Ito, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

Many people commonly wear eyeglasses on their face, masking the area around the eyes. The lens part of the eyeglasses can often be visible through the back area, while the frame part of the eyeglasses completely hides the back area, resulting in degrading the performance of face image processing. By taking the eyeglass frame into account in face image processing, we can not only improve the accuracy of recognition and analysis, but also apply it to automatic quality assessment in standardized photos such as passport photos. In this paper, we propose an eyeglass frame segmentation method using the combination of U-Net and PSPNet. We also propose a novel data augmentation method to increase the number of face images with eyeglasses. Through a set of experiments using CelebAMask-HQ, we demonstrate that the proposed method exhibits the efficient performance in the segmentation of eyeglass frames.

本文言語英語
ホスト出版物のタイトルProceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1572-1576
ページ数5
ISBN(電子版)9786165904773
DOI
出版ステータス出版済み - 2022
イベント2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 - Chiang Mai, タイ
継続期間: 2022 11月 72022 11月 10

出版物シリーズ

名前Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022

会議

会議2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
国/地域タイ
CityChiang Mai
Period22/11/722/11/10

フィンガープリント

「Eyeglass Frame Segmentation for Face Image Processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル