Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

Masaaki Omichi, Atsushi Asano, Satoshi Tsukuda, Katsuyoshi Takano, Masaki Sugimoto, Akinori Saeki, Daisuke Sakamaki, Akira Onoda, Takashi Hayashi, Shu Seki

研究成果: Article査読

29 被引用数 (Scopus)

抄録

Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

本文言語English
論文番号3718
ジャーナルNature communications
5
DOI
出版ステータスPublished - 2014 4月 28

ASJC Scopus subject areas

  • 化学 (全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル