Face Image De-identification Based on Feature Embedding for Privacy Protection

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

1 被引用数 (Scopus)

抄録

With the expansion of social networking services, a large number of face images have been disclosed on the Internet. Since face recognition makes it easy to collect face images of specific persons, the collected face images can be used to attack face recognition systems, such as spoofing attacks. Face image de-identification, which makes face recognition difficult without changing the appearance of the face image, is necessary for disclosing face images safely on the Internet. In this paper, we propose a face image de-identification method by embedding facial features of another person into a face image. The proposed method uses a convolutional neural network to generate a face image that can be recognized as that of another person while preserving the appearance of the face image. Through a set of experiments using a public face image dataset, we demonstrate that the proposed method preserves the appearance of face images and has high de-identification performance against unknown face recognition models compared to conventional methods.

本文言語英語
ホスト出版物のタイトルBIOSIG 2023 - Proceedings of the 22nd International Conference of the Biometrics Special Interest Group
編集者Naser Damer, Marta Gomez-Barrero, Kiran Raja, Christian Rathgeb, Ana F. Sequeira, Massimiliano Todisco, Andreas Uhl
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350336559
DOI
出版ステータス出版済み - 2023
イベント22nd International Conference of the Biometrics Special Interest Group, BIOSIG 2023 - Darmstadt, ドイツ
継続期間: 2023 9月 202023 9月 22

出版物シリーズ

名前BIOSIG 2023 - Proceedings of the 22nd International Conference of the Biometrics Special Interest Group

会議

会議22nd International Conference of the Biometrics Special Interest Group, BIOSIG 2023
国/地域ドイツ
CityDarmstadt
Period23/9/2023/9/22

フィンガープリント

「Face Image De-identification Based on Feature Embedding for Privacy Protection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル